

HELICOPTER QUIETING PROGRAM

BAA Released: 11 March 2004

Proposals Due: 30 April 2004

Approved For Public Release Distribution Unlimited

The Problem

Several complicated mechanisms contribute to the helicopter noise signature

- Wind tunnel testing is very expensive and time consuming
- Most designs are based on empirical data rotor designs are evolutionary rather than revolutionary
- Current SOA in modeling does not capture all of the physical effects in complex rotational flow
- Most "obvious" methods to reduce noise have a performance penalty

Program Objective

Reduce acoustic signature of a helicopter to minimize the probability of detection.

End of Program Goal: Order-of-magnitude reduction of low-frequency in-plane acoustic signature without a reduction in performance.

Program Overview

Create a new capability

- Develop physics-based, predictive design tools by leveraging high-end CFD techniques
- Validate models using existing data from both wind tunnel and field tests
- Advisors from government and industry provides guidance to ensure applicability of new tool

Develop a new design

- Design new blades that significantly reduce the low-frequency in-plane acoustic signature
- Verify design through wind tunnel testing

Flight testing of new design

Possible Approach

- Exploit recent advances in computational fluid dynamics to develop a physics-based design tool that can predict the detailed blade loading and performance regardless of blade shape
- Utilize the tool to develop novel blade designs with vastly improved acoustic characteristics

Tentative Schedule & Milestones

